First In Vivo Images from an In-House Parallel Transmit (pTx) Coil for MRI at 7 Tesla

PRESENTER: **Sydney Williams**¹
Co-authors: Sarah Allwood-Spiers²,
Paul McElhinney¹, Yuehui Tao³,

John E. Foster², David A. Porter¹, Shajan Gunamony^{1,4}

1. Imaging Centre of Excellence, University of Glasgow

2. MRI Physics, NHS Greater Glasgow and Clyde

3. Siemens Healthcare Ltd., United Kingdom 4. MR CoilTech

BACKGROUND: Clincal 7 T MRI

- Signal , yielding
- Resolution*
- Speed*Susceptibility
- Spectral resolution

Power deposition (SAR)

* trade-off between;

7 T Siemens Terra

inherent limits

METHODS

• Build custom pTx coil (S. Gunamony) to mitigate RF inhomogeneity at 7 tesla:

S. Allwood-Spiers et al., "Development of a dual-mode head coil for human brain imaging at 7 Tesla", *In Preparation*→ Look out for publication soon!

- Electromagnetic field simulation (P. McElhinney †)
- Temperature/safety testing (S. Allwood-Spiers†)
- Initial pTx field mapping and static pTx
 (B1 shimming) in healthy volunteers before full waveform pTx development

† other presentations at SINAPSE on these topics

Figure 2. In pTx, individual transmission channels are controlled independently to craft a combined RF field that is more homogenous.

SINAPSE ASM 2020

IN A PILOT STUDY OF

9 HEALTHY VOLUNTEERS, PARALLEL

TRANSMIT (PTX) IMPROVES IMAGE

QUALITY IN 7 T BRAIN IMAGING

Figure 1. A,C) Single transmit (non-pTx) with signal and contrast loss shown by arrows B,D) B1 shimming, a simple version of pTx, improves signal and contrast loss

Figure 3. Resultant T2-weighted image in another volunteer using pTx with B1 shimming. We expect further improvements with full waveform pTx.

RESULTS

- To date, 9 healthy volunteers have been scanned with the custom-built pTx coil
- Static B1 shimming altered relative amplitude and phase of individual pTx channels to improve the RF field uniformity in 7 T MRI
 - In 3 volunteers, B1 shimming pTx resulted in higher power deposition (SAR) than single transmit (sTx), in 1 volunteer SAR was the same, and in the other cases, B1 shimming produced lower SAR

Image Slice	NRMSE	Flip Angle Mean ± StDev (°)	Calc. Max. Local SAR (W/kg)	
Upper, sTx (A)	0.46	53.0 ± 19.8	3.5	3.9
Upper, pTx (B)	0.45	50.3 ± 16.0	3.6	3.9
Lower, sTx (C)	0.42	57.1 ± 22.1	3.5	3.9
Lower, pTx (D)	0.42	53.1 ± 18.0	3.6	3.9
				•

Table 1. Comparison of conventional, single transmit and B1 Shimming (static pTx) for the images in Figure 1 (center of poster)

Figure 4. Individual channel RF field maps acquired from a healthy volunteer

CONCLUSIONS

- Preliminary work with B1 shimming has already shown the benefits of pTx
- Meanwhile confidence has been gained in using a technically challenging method and the added safety monitoring requirements it comes with
 - Field mapping data from the cohort of healthy volunteers allows for further technical development work on dynamic pTx

