Medical Image Understanding and Analysis Conference 2020 Jul 15, 2020 - Jul 17, 2020 — Virtual Meeting (online)
CAFACHEM 2020 Summer School on Organic & Halogen Radiochemistry Aug 26, 2020 - Aug 28, 2020 — Virtual Meeting (online)
Scottish Dementia Research Consortium Annual Conference 2020 [rescheduled] Sep 07, 2020 10:00 AM - 04:00 PM — Radisson Blu, 301 Argyle St, Glasgow
Society for Magnetic Resonance Angiography - SMRA2020 VIRTUAL Sep 11, 2020 - Sep 13, 2020 — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Disentangled Representations for Efficient Algorithms for Medical data MICCAI 2020 Tutorial

Tutorial on Disentangled Representations for Efficient Algorithms for Medical data (DREAM) at MICCAI 2020
When Oct 04, 2020
from 12:00 AM to 12:00 AM
Where Lima, Peru
Contact Name
Add event to calendar vCal
iCal

Disentangled representation learning has been proposed as an approach to learning general representations. This can be done in the absence of annotations, or with limited annotation. A good general representation can be readily fine-tuned for new target tasks using modest amounts of data. This alleviation of the data and annotation requirements offers tantalising prospects for tractable and affordable healthcare. Finally, disentangled representations can offer model explainability, increasing their suitability for real-world deployment.

In this half-day tutorial, a satellite event in conjunction with MICCAI 2020, we will offer an overview of representation learning and disentangled representation learning and criteria, and discuss applications in medical imaging. We will conclude with open ended challenges.

More information about this event…