Rosetrees Interdisciplinary workshop on neurodegenerative diseases of the brain Feb 10, 2021 09:00 AM - 05:00 PM — Virtual Meeting (online)
iCAIRD, NHS GG&C and NVIDIA: AI in Healthcare Feb 25, 2021 09:00 AM - 12:15 PM — Virtual Meeting (online)
Medical Imaging Convention [rescheduled] Sep 15, 2021 - Sep 16, 2021 — National Exhibition Centre, Birmingham, England
Total Body PET 2021 conference [rescheduled] Sep 25, 2021 - Sep 27, 2021 — McEwan Hall, University of Edinburgh


SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.

Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Vacancy: Preclinical MRI Physics Research Associate at University of Glasgow

Research Associate post available to work on preclinical project developing an MRI based method for imaging myocardial blood flow and aerobic metabolism

The identification of myocardial infarction (MI) patients who can benefit from revascularisation remains one of the most challenging aspects of cardiology. Ideally, an assessment of viability following myocardial ischaemia requires knowledge of both myocardial blood flow (MBF) and aerobic metabolism (myocardial oxygen consumption MVO2). Unfortunately, the current gold standard for imaging aerobic metabolism, 15O2 positron emission tomography (PET), is not practical for routine clinical use. This project takes the first steps in developing a safe alternative approach based on Magnetic Resonance Imaging (MRI), using intravenous delivery of oxygen carriers pre-saturated with 17O2 gas and 17O decoupled 1H MRI. The method will be validated in vivo using a pre-clinical model of myocardial infarction. An MRI based method for imaging aerobic metabolism, combined with MRI assessment of perfusion, would allow better assessment of myocardial viability directly via "flow-metabolism mismatch".

Specifically, the postholder will conduct, manage and publish research in the area of preclinical MRI physics and in-vivo experiments as well as assist in managing and directing this complex and challenging project.

The funding for this post is for 2 years in the first instance. Informal enquires may be made to Dr William Holmes (

For further information see

Closing date: 12th November 2017