Medical Imaging Convention [rescheduled] Mar 09, 2021 - Mar 10, 2021 — National Exhibition Centre, Birmingham, England
9th SINAPSE Neuro-oncology Imaging Meeting [rescheduled] Mar 11, 2021 09:30 AM - 03:30 PM — West Park Conferencing & Events, 319 Perth Road, Dundee DD2 1NN
Total Body PET 2020 conference [rescheduled] Jun 05, 2021 - Jun 07, 2021 — McEwan Hall, University of Edinburgh

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

3-fluoro-GABA enantiomers: exploring the conformation of GABA binding to GABA(A) receptors and GABA aminotransferase

Author(s): D. O'Hagan

Abstract:
The neurotransmitter GABA is the main inhibitory neurotransmitter of the CNS. It is estimated that 20-50% of all neuronal synapses are GABAergic. Distinct types of GABA receptor have been identified (GABA(A), GABA(B) and GABA(AOr) [GABA(C)]). The GABA(A) and GABA(AOr) variant found in the retina receptors (informally termed GABA(C)) are physiologically related in that they are both ligand (GABA)-gated chloride ion channels. The GABA(B) receptor mediates its response by modulating Ca2+ and K+ ion channels, which then trigger coupled G-proteins. These receptors have not succumbed to x-ray structural analysis at a suitable resolution to determine the nature of GABA binding. However, knowledge of how GABA binds is important for the design of novel agonists and antagonists, and the development of neuropharmaceutical agents. Comparison of the relative agonistic efficacy of the (R)- and (S)-enantiomers of 3-fluoro-GABA has been used as a method to probe the binding conformation of the neurotransmitter binding to target proteins. The analysis relies on the stereoelectronic influence of the C F bond interacting with the ammonium group of GABA, an electrostatic interaction that favors solution conformers where the substituents come close (gauche rather than anti). This article describes how comparative analysis of these enantiomers has been used to assess the conformation of GABA binding to GABA(A) and the GABA-metabolizing enzyme, GABA transaminase.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 1756-8919
Publication Year: 2011
Periodical: Future Medicinal Chemistry
Periodical Number: 2
Volume: 3
Pages: 189-195
Author Address: