4th International Conference on Medical Imaging with Deep Learning Jul 07, 2021 - Jul 09, 2021 — Virtual Meeting (online)
Medical Image Understanding and Analysis Conference 2021 Jul 12, 2021 - Jul 14, 2021 — Virtual Meeting (online)
Medical Imaging Convention [rescheduled] Sep 15, 2021 - Sep 16, 2021 — National Exhibition Centre, Birmingham, England
2021 SINAPSE ASM Sep 16, 2021 - Sep 17, 2021 — Technology & Innovation Centre, University of Strathclyde, 99 George Street, Glasgow
Total Body PET 2021 conference [rescheduled] Sep 22, 2021 - Sep 24, 2021 — Virtual Meeting (online)


SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.

Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

A comparison of signal instability in 2D and 3D EPI resting-state fMRI

Author(s): U. Goerke, H. E. Moller, D. G. Norris, C. Schwarzbauer

Spatiotemporally structured noise, such as physiological noise, is a potential source of artifacts in functional magnetic resonance imaging (fMRI) and is the main limiting factor for the detection of small blood oxygen level-dependent (BOLD) signal variations. fMRI was employed to detect low-frequency BOLD signal fluctuations. which are thought to be related to spontaneous neuronal activity in the resting human brain. The sensitivity to noise, that is, signal variations of nonBOLD origin, was investigated for two- (2D) and three-dimensional (3D) imaging techniques. Incomplete relaxation between subsequent scans increases the level of temporally and spatially correlated signal variations originating from physiological and/or systemic noise. Although inflow effects are suspected to be reduced in 3D echo-planar imaging (EPI) compared with multi-slice 2D EPI, the noise level was higher in the 3D technique. The noise level in 3D fMRI experiments was significantly increased by instabilities of the transverse steady-state magnetization as the repetition time was of the order of T-2. By implementing radiofrequency spoiling, temporal signal fluctuations and erroneous inter-regional correlation in connectivity maps were diminished to a level present in data sets acquired with 2D EPI. Copyright (c) 2005 John Wiley & Sons, Ltd.

Full version: Available here

Click the link to go to an external website with the full version of the paper

ISBN: 0952-3480
Publication Year: 2005
Periodical: Nmr in Biomedicine
Periodical Number: 8
Volume: 18
Pages: 534-542
Author Address: