Rosetrees Interdisciplinary workshop on neurodegenerative diseases of the brain Feb 10, 2021 09:00 AM - 05:00 PM — Virtual Meeting (online)
iCAIRD, NHS GG&C and NVIDIA: AI in Healthcare Feb 25, 2021 09:00 AM - 12:15 PM — Virtual Meeting (online)
Medical Imaging Convention [rescheduled] Sep 15, 2021 - Sep 16, 2021 — National Exhibition Centre, Birmingham, England
Total Body PET 2021 conference [rescheduled] Sep 25, 2021 - Sep 27, 2021 — McEwan Hall, University of Edinburgh

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

DSC perfusion MRI - Quantification and reduction of systematic errors arising in areas of reduced cerebral blood flow

Author(s): T. K. Carpenter, P. A. Armitage, M. E. Bastin, J. M. Wardlaw

Abstract:
Dynamic susceptibility contrast (DSC)-MRI is commonly used to measure cerebral perfusion in acute ischemic stroke. Quantification of perfusion parameters involves deconvolution of the tissue concentration-time curves with an arterial input function (AIF), typically with the use of singular value decomposition (SVD). To mitigate the effects of noise on the estimated cerebral blood flow (CBF), a regularization parameter or threshold is used. Often a single global threshold is applied to every voxel, and its value has a dramatic effect on the CBF values obtained. When a single global threshold was applied to simulated concentration-time curves produced using exponential, triangular, and boxcar residue functions, significant systematic errors were found in the measured perfusion parameters. We estimate the errors obtained for different sampling intervals and signal-to-noise ratios (SNRs), and discuss the source of the systematic error. We present a method that partially corrects for the systematic error in the presence of an exponential residue function by applying a linear fit, which removes underestimates of long mean transit time (MTT) and overestimates of short MTT. For example, the correction reduced the error at a temporal resolution of 2.5 s and an SNR of 30 from 29.1% to 11.7%. However, the error is largest in the presence of noise and at MTTs that are likely to be encountered in areas of hypoperfusion; furthermore, even though it is reduced, it cannot be corrected for exactly.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 0740-3194
Publication Year: 2006
Periodical: Magnetic Resonance in Medicine
Periodical Number: 6
Volume: 55
Pages: 1342-1349
Author Address: