Ophthalmic Medical Image Analysis MICCAI 2020 Workshop Oct 08, 2020 12:00 AM — Virtual Meeting (online)
Predictive Intelligence in Medicine MICCAI 2020 Workshop Oct 08, 2020 12:00 AM — Virtual Meeting (online)
PET is Wonderful Annual Meeting 2020 Oct 27, 2020 02:00 PM - 05:40 PM — Virtual Meeting (online)
NRS Mental Health Network Annual Scientific Meeting 2020 Nov 04, 2020 09:00 AM - 05:30 PM — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

The identification of 5 '-fluoro-5-deoxyino sine as a shunt product in cell free extracts of Streptomyces cattleya

Author(s): S. L. Cobb, H. Deng, J. T. G. Hamilton, R. P. McGlinchey, D. O'Hagan, C. Schaffrath

Abstract:
5'-Fluoro-5'-deoxyinosine (5'-FDI) is identified as an adventitious side product that accumulates in cell free incubations of SAM and fluoride ion in Streptomyces cattleya. 5'-FDI was identified by a combination of isotopic labelling studies and co-synthesis studies as well as enzymatic degradation. Although it is an efficiently generated end product of the cell free incubations, 5'-FDI is not a biosynthetic intermediate and it does not accumulate as a fluorometabolite with fluoroacetate and 4-fluorothreonine in whole cell incubations of S. cattleya. Clearly the purine deaminase which converts 5'-fluoro-5'-deoxyadenosine (5'-FDA) to 5'-FDI in the cell free extract does not come into contact with 5'-FDA in whole cells, suggesting some level of compartmentalisation in cells of S. cattleya. The biotransformation of 5'-FDI from fluoride ion extends the range of organofluorine products, beyond biosynthetic intermediates, that can be generated by this system, for applications such as enzymatic labelling with fluorine-18 for positron emission tomography applications. (c) 2005 Elsevier Inc. All rights reserved.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 0045-2068
Publication Year: 2005
Periodical: Bioorganic Chemistry
Periodical Number: 5
Volume: 33
Pages: 393-401
Author Address: