Scottish Radiological Society Spring Meeting 2021 May 14, 2021 09:00 AM - 05:00 PM — Virtual Meeting (online)
9th Annual Scottish Radiotherapy Research Forum Jun 03, 2021 12:30 PM - 05:00 PM — Virtual Meeting (online)
Medical Imaging Convention [rescheduled] Sep 15, 2021 - Sep 16, 2021 — National Exhibition Centre, Birmingham, England
Total Body PET 2021 conference [rescheduled] Sep 25, 2021 - Sep 27, 2021 — McEwan Hall, University of Edinburgh

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Interleaved silent steady state (ISSS) imaging: A new sparse imaging method applied to auditory fMRI

Author(s): C. Schwarzbauer, M. H. Davis, J. M. Rodd, I. Johnsrude

Abstract:
The acoustic scanner noise that is generated by rapid gradient switching in echo planar imaging (EPI) is an important confounding factor in auditory fMRI. "Sparse imaging" designs overcome the influence of scanner noise on stimulus presentation by acquiring single brain volumes following a silent stimulus presentation period. However, conventional sparse imaging requires assumptions about the time to-peak of the evoked hemodynamic response and reduces the amount of EPI data which can be acquired and hence statistical power. In this article, we describe an "interleaved silent steady state" (ISSS) sampling scheme in which we rapidly acquire a set of EPI volumes following each silent stimulus presentation period. We avoid T-1-related signal decay during the acquisition of the EPI volumes by maintaining the steady state longitudinal magnetization with a train of silent slice-selective excitation pulses during the silent period, ensuring that signal contrast is constant across successive scans. A validation study comparing ISSS to conventional sparse imaging demonstrates that ISSS imaging provides time course information that is absent in conventional sparse imaging data. The ISSS sequence has a temporal resolution like event-related (ER) imaging within a single trial (unlike conventional sparse imaging, where ER-like temporal resolution can only be achieved by, compiling data across many jittered trials of the same stimulus type). This temporal resolution within trials makes ISSS particularly suitable for experiments in which a) scanner noise would interfere with the perception and processing of the stimulus; b) stimuli are several seconds in duration, and activation is expected to evolve and change as the stimulus unfolds; and c) it is impractical to present a single stimulus more than once (for example, repetition priming or familiarity effects would be expected). (c) 2005 Elsevier Inc. All rights reserved.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 1053-8119
Publication Year: 2006
Periodical: Neuroimage
Periodical Number: 3
Volume: 29
Pages: 774-782
Author Address: