4th International Conference on Medical Imaging with Deep Learning Jul 07, 2021 - Jul 09, 2021 — Virtual Meeting (online)
Medical Image Understanding and Analysis Conference 2021 Jul 12, 2021 - Jul 14, 2021 — Virtual Meeting (online)
Medical Imaging Convention [rescheduled] Sep 15, 2021 - Sep 16, 2021 — National Exhibition Centre, Birmingham, England
2021 SINAPSE ASM Sep 16, 2021 - Sep 17, 2021 — Technology & Innovation Centre, University of Strathclyde, 99 George Street, Glasgow
Total Body PET 2021 conference [rescheduled] Sep 22, 2021 - Sep 24, 2021 — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Non-lateralised deficits in anti-saccade performance in patients with hemispatial neglect

Author(s): S. H. Butler, S. Rossit, I. D. Gilchrist, C. J. H. Ludwig, B. Olk, K. Muir, I. Reeves, M. Harvey

Abstract:
We tested patients suffering from hemispatial neglect on the anti-saccade paradigm to assess voluntary control of saccades. In this task participants are required to saccade away from an abrupt onset target. As has been previously reported, in the pro-saccade condition neglect patients showed increased latencies towards targets presented on the left and their accuracy was reduced as a result of greater undershoot. To our surprise though, in the anti-saccade condition, we found strong bilateral effects: the neglect patients produced large numbers of erroneous pro-saccades to both left and right stimuli. This deficit in voluntary control was present even in patients whose lesions spared the frontal lobes. These results suggest that the voluntary control of action is supported by an integrated network of cortical regions, including more posterior areas. Damage to one or more components within this network may result in impaired voluntary control. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 0028-3932
Publication Year: 2009
Periodical: Neuropsychologia
Periodical Number: 12
Volume: 47
Pages: 2488-2495
Author Address: