4th International Conference on Medical Imaging with Deep Learning Jul 07, 2021 - Jul 09, 2021 — Virtual Meeting (online)
Medical Image Understanding and Analysis Conference 2021 Jul 12, 2021 - Jul 14, 2021 — Virtual Meeting (online)
Medical Imaging Convention [rescheduled] Sep 15, 2021 - Sep 16, 2021 — National Exhibition Centre, Birmingham, England
2021 SINAPSE ASM Sep 16, 2021 - Sep 17, 2021 — Technology & Innovation Centre, University of Strathclyde, 99 George Street, Glasgow
Total Body PET 2021 conference [rescheduled] Sep 22, 2021 - Sep 24, 2021 — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

The rat gonadotropin-releasing hormone receptor internalizes via a beta-arrestin-independent, but dynamin-dependent, pathway: Addition of a carboxyl-terminal tail confers beta-arrestin dependency

Author(s): A. Heding, M. Vrecl, A. C. Hanyaloglu, R. Sellar, P. L. Taylor, K. A. Eidne

Abstract:
This study examined the mechanism underlying the rat GnRH receptor (GnRH-R) internalization pathway by investigating the role of added/extended C-terminal tails and the effect of beta-arrestins and dynamin. The internalization of the wild-type (WT) rat GnRH-R, stop codon mutants, GnRH-R/TRH receptor (TRK-R) chimera, rat TRH-R, and catfish GnRH-R was examined using radioligand binding assay. Overexpression of beta-arrestin in COS-7 cells expressing each of the receptor constructs substantially increased endocytosis rate constants (k(e)) of the TRH-R, catfish GnRH-R, and GnRH-R/TRH-R chimera, but not of the WT rat GnRH-R and stop codon mutants. The beta-arrestin-promoted increase in the k(e) value was diminished by co- transfecting cells with the dominant negative beta-arrestin-(319-418) mutant, whereas WT GnRH-R and stop codon mutant internalization were unaffected. Additionally, confocal microscopy showed that activated GnRH-Rs failed to induce time-dependent redistribution of either beta-arrestin-1- or beta-arrestin-2-green fluorescent protein conjugate to the plasma membrane. However, the dominant negative dynamin (DynK44A) mutant impaired internalization of all of the receptors regardless of their p-arrestin dependency, indicating that they internalize via a clathrin-mediated pathway. We conclude that the mammalian GnRH-R uses a beta-arrestin-independent, dynamin-dependent internalization mechanism distinct from that employed by the other receptors studied.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 0013-7227
Publication Year: 2000
Periodical: Endocrinology
Periodical Number: 1
Volume: 141
Pages: 299-306
Author Address: