SINAPSE Virtual Happy Hour Aug 25, 2021 05:00 PM - 06:00 PM — Zoom
3rd Scottish Ultrasound Annual Scientific Meeting Aug 27, 2021 10:00 AM - 05:00 PM — Virtual Meeting (online)
Medical Imaging Convention [rescheduled] Sep 15, 2021 - Sep 16, 2021 — National Exhibition Centre, Birmingham, England
2021 SINAPSE ASM Sep 16, 2021 - Sep 17, 2021 — Technology & Innovation Centre, University of Strathclyde, 99 George Street, Glasgow
Total Body PET 2021 conference [rescheduled] Sep 22, 2021 - Sep 24, 2021 — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Time-dependent models of the structure and stability of self-gravitating protoplanetary discs

Author(s): W. K. M. Rice, P. J. Armitage

Abstract:
Angular momentum transport within young massive protoplanetary discs may be dominated by self-gravity at radii where the disc is too weakly ionized to allow the development of the magneto-rotational instability. We use time-dependent one-dimensional disc models, based on a local cooling time calculation of the efficiency of transport, to study the radial structure and stability (against fragmentation) of protoplanetary discs in which self-gravity is the sole transport mechanism. We find that self-gravitating discs rapidly attain a quasi-steady state in which the surface density in the inner disc is high and the strength of turbulence very low (alpha similar to 10(-3) or less inside 5 au). Temperatures high enough to form crystalline silicates may extend out to several astronomical units at early times within these discs. None of our discs spontaneously develop regions that would be unambiguously unstable to fragmentation into substellar objects, though the outer regions (beyond 20 au) of the most massive discs are close enough to the threshold that fragmentation cannot be ruled out. We discuss how the mass accretion rates through such discs may vary with disc mass and with mass of the central star, and note that a determination of the. M-M-* relation for very young systems may allow a test of the model.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 0035-8711
Publication Year: 2009
Periodical: Monthly Notices of the Royal Astronomical Society
Periodical Number: 4
Volume: 396
Pages: 2228-2236
Author Address: