PET is Wonderful Annual Meeting 2020 Oct 27, 2020 02:00 PM - 05:40 PM — Virtual Meeting (online)
Through the Looking Glass: Breaking Barriers in STEM Oct 28, 2020 12:00 PM - 03:30 PM — Virtual Meeting (online)
NRS Mental Health Network Annual Scientific Meeting 2020 Nov 04, 2020 09:00 AM - 05:30 PM — Virtual Meeting (online)
Scottish Radiological Society Annual General Meeting 2020 Nov 06, 2020 09:30 AM - 03:30 PM — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Towards building a photo-realistic virtual human face for craniomaxillofacial diagnosis and treatment planning

Author(s): A. F. Ayoub, Y. Xiao, B. Khambay, J. P. Siebert, D. Hadley

Abstract:
The aim of this investigation Was to assess the feasibility of building a virtual human face digitally by superimposing a photo-realistic three-dimensional (3D) soft-tissue surface on bone in the correct relationship and evaluating the registration errors associated with this method. The 3D soft-tissue surface of the face was captured using a fast stereophotogrammetry method and the underlying bone was recorded using a 3D computed tomography (CT) scanner. Using the Procrustes registration method, the outer surface of the 3D CT scan and the photo-realistic soft-tissue surfaces were merged into a single Virtual Reality Modelling Language (VRML) file and displayed using a standard VRML viewer. Quantitative measurements of registration errors were calculated in the reconstructed human head models using the signed closest point distance from the photo-realistic skin surface to the transformed CT skin surface. The registration errors between most parts of the aligned surfaces were within +/- 1.5 mm. The errors were relatively large around the eyebrows, eyelids and cheeks. Simultaneous recording of the face and skull may reduce this error.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 0901-5027
Publication Year: 2007
Periodical: International Journal of Oral and Maxillofacial Surgery
Periodical Number: 5
Volume: 36
Pages: 423-428
Author Address: