PET is Wonderful Annual Meeting 2021 Oct 26, 2021 12:00 AM — Virtual Meeting (online)
NRS Mental Health Network Annual Scientific Meeting 2021 Nov 02, 2021 09:00 AM - 05:00 PM — Royal College of Physicians, Edinburgh (and online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle

Author(s): K. R. Swanson, H. L. P. Harpold, D. L. Peacock, R. Rockne, C. Pennington, L. Kilbride, R. Grant, J. M. Wardlaw, E. C. Alvord

Abstract:
Aims: The initial aims were to use recently available observations of glioblastomas (as part of a previous Study) that had been imaged twice without intervening treatment before receiving radiotherapy in order to obtain quantitative measures of glioma growth and invasion according to a new bio- mathematical model. The results were so interesting as to raise the question whether the degree of radio-sensitivity of each tumour could be estimated by comparing the model-predicted and actual durations of survival and total numbers of glioma cells after radiotherapy. Materials and methods: The gadolinium-enhanced T1 -weighted and T2-weighted magnetic resonance imaging volumes were segmented and used to calculate the velocity of radial expansion (v) and the net rates of proliferation (rho) and invasion/dispersal (D) for each patient according to the bio-mathematical model. Results: The ranges of the values of v, D and rho show that glioblastomas, although clustering at the high end of rates, vary widely one from the other. The effects of X-ray therapy varied from patient to patient. About half survived as predicted without treatment, indicating radio-resistance of these tumours. The other half survived up to about twice as long as predicted without treatment and could have had a corresponding loss of glioma cells, indicating some degree of radiosensitivity. These results approach the historical estimates that radiotherapy can double survival of the average patient with a glioblastoma. Conclusions: These cases are among the first for which values of v, D and rho have been calculated for glioblastomas. The results constitute a 'proof of principle' by combining our bio-mathematical model for glioma growth and invasion with pre-treatment imaging observations to provide a new tool showing that individual glioblastomas may be identified as having been radio-resistant or radio-sensitive.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 0936-6555
Publication Year: 2008
Periodical: Clinical Oncology
Periodical Number: 4
Volume: 20
Pages: 301-308
Author Address: