2022 PET Pharmacokinetic Modelling Course May 26, 2022 - May 28, 2022 — Edinburgh
Brain and Brain PET 2022 May 29, 2022 - Jun 01, 2022 — Glasgow
2022 SINAPSE ASM Jun 13, 2022 - Jun 14, 2022 — Strathclyde University, Glasgow
2022 OHBM Annual Meeting Jun 19, 2022 - Jun 23, 2022 — Glasgow, SEC


SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists. **Unfortunately these do not currently work in browsers**

Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Visual evaluation of perfusion computed tomography in acute stroke accurately estimates infarct volume and tissue viability

Author(s): K. W. Muir, H. M. Halbert, T. A. Baird, M. McCormick, E. Teasdale

Objective: To establish the validity of visual interpretation of immediately processed perfusion computed tomography (CT) maps in acute stroke for prediction of final infarction. Methods: Perfusion CT studies acquired prospectively were reprocessed within six hours of stroke onset using standard CT console software. Four contiguous 5 mm thick images were obtained and maps of time to peak (TTP) and cerebral blood volume (CBV) generated. Volumes of lesions identified only by visual inspection were measured from manually drawn regions of interest. Volumes of tissue with prolonged TTP or reduced CBV were compared with independently calculated volume of infarction on non-contrast CT (NCCT) at 24-48 hours, and with clinical severity using the NIHSS score. Arterial patency at 24-48 h was included in analyses. Results: Studies were analysed from 17 patients 150 minutes (median) after stroke onset. Volume of tissue with prolonged TTP correlated with initial NIHSS (r = 0.62, p = 0.009), and with NCCT final infarct volume when arterial occlusion persisted (r = 0.953, p = 0.012). Volume of tissue with reduced CBV correlated with final infarct volume if recanalisation occurred (r = 0.835, p = 0.001). Recanalisation was associated with lower 24 h NIHSS score (6 (IQR, 5 to 9.5) v 19 (18 to 26), p = 0.027), and in 10 patients given rtPA for MCA M1 occlusion, with lower infarct volume (73 v 431 ml, p = 0.002). Conclusions: Visual evaluation of TTP and CBV maps generated by standard perfusion CT software correlated with 24-48 hour CT infarct volumes. Comparison of TTP and CBV maps yields information on tissue viability. Perfusion CT represents a practical technique to aid acute clinical decision making. Recanalisation was a crucial determinant of clinical and radiological outcome.

Full version: Available here

Click the link to go to an external website with the full version of the paper

ISBN: 0022-3050
Publication Year: 2006
Periodical: Journal of Neurology Neurosurgery and Psychiatry
Periodical Number: 3
Volume: 77
Pages: 334-339
Author Address: