3rd International Conference on Medical Imaging with Deep Learning Jul 06, 2020 - Jul 08, 2020 — Virtual Meeting (online)
Medical Image Understanding and Analysis Conference 2020 Jul 15, 2020 - Jul 17, 2020 — Virtual Meeting (online)
CAFACHEM 2020 Summer School on Organic & Halogen Radiochemistry Aug 26, 2020 - Aug 28, 2020 — Virtual Meeting (online)
Scottish Dementia Research Consortium Annual Conference 2020 [rescheduled] Sep 07, 2020 10:00 AM - 04:00 PM — Radisson Blu, 301 Argyle St, Glasgow
Society for Magnetic Resonance Angiography - SMRA2020 VIRTUAL Sep 11, 2020 - Sep 13, 2020 — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Visualization and analysis of white matter structural asymmetry in diffusion tensor MRI data

Author(s): S. Zhang, M. E. Bastin, D. H. Laidlaw, S. Sinha, P. A. Armitage, T. S. Deisboeck

Abstract:
This work presents a method that permits the characterization, quantification, and 3D visualization of white matter structural information contained within diffusion tensor MR imaging (DTMRI) data. In this method, regions within the brain are defined as possessing linear, planar, or spherical diffusion. Visualization of this diffusion metric data is realized by generating streamtube and streamsurface models to represent regions of linear and planar diffusion. Quantification of differences in diffusion anisotropy between different regions of interest (ROIs) is then achieved by analyzing 2D barycentric histograms created from the complete distribution of diffusion metric values measured in each region. In four healthy volunteers, there was only a small degree of asymmetry (epsilon) in the number of linear, planar, or spherical diffusion voxels between the right and left hemispheres (epsilon similar or equal to +/- 2%). However, in a patient with a metastatic brain lesion there was marked asymmetry in both linear (epsilon similar or equal to -10%) and planar (epsilon similar or equal to 5%) diffusion between comparable ipsilateral and contralateral regions, with a significant reduction in the number of linear diffusion voxels and an increase in the number of planar diffusion voxels in the tumor-bearing hemisphere. These results demonstrate the potential of this approach to characterize brain structure in both healthy and diseased subjects. (C) 2003 Wiley-Liss, Inc.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 0740-3194
Publication Year: 2004
Periodical: Magnetic Resonance in Medicine
Periodical Number: 1
Volume: 51
Pages: 140-147
Author Address: