PET is Wonderful Annual Meeting 2020 Oct 27, 2020 02:00 PM - 05:40 PM — Virtual Meeting (online)
Through the Looking Glass: Breaking Barriers in STEM Oct 28, 2020 12:00 PM - 03:30 PM — Virtual Meeting (online)
NRS Mental Health Network Annual Scientific Meeting 2020 Nov 04, 2020 09:00 AM - 05:30 PM — Virtual Meeting (online)
Scottish Radiological Society Annual General Meeting 2020 Nov 06, 2020 09:30 AM - 03:30 PM — Virtual Meeting (online)
IPEM educational meeting: Artificial Intelligence in MRI Nov 18, 2020 12:00 AM — Virtual Meeting (online)


SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.

Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Predictive classification of individual magnetic resonance imaging scans from children and adolescents

Author(s): B. A. Johnston, B. Mwangi, K. Matthews, D. Coghill, J. D. Steele

Neuroimaging techniques are increasingly being explored as potential tools for clinical prediction in psychiatry. There are a wide range of approaches which can be applied to make individual predictions for various aspects of disorders such as diagnostic status, symptom severity scores, identification of patients at risk of developing disorders and estimation of the likelihood of response to treatment. This selective review highlights a popular group of pattern recognition techniques, support vector machines (SVMs) for use with structural magnetic resonance imaging scans. First, however, we outline various practical issues, limitations and techniques which need to be considered before SVM's can be applied. We begin with a discussion on the practicalities of scanning children and adolescent participants and the importance of acquiring high quality images. Scan processing required for inter-subject comparisons is then discussed. We then briefly discuss feature selection and other considerations when applying pattern recognition techniques. Finally, SVMs are described and various studies highlighted to indicate the potential of these techniques for child and adolescent psychiatric research.

Full version: Available here

Click the link to go to an external website with the full version of the paper

ISBN: 1435-165X (Electronic) 1018-8827 (Linking)
Publication Year: 2012
Periodical: Eur Child Adolesc Psychiatry
Periodical Number:
Author Address: Division of Neuroscience, Ninewells Hospital and Medical School, Medical Research Institute, University of Dundee, Mailbox 5, Dundee, DD1 9SY, UK,