SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists. **Unfortunately these do not currently work in browsers**

Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Inhibition of poly(ADP-Ribose) polymerase enhances the toxicity of 131I-metaiodobenzylguanidine/topotecan combination therapy to cells and xenografts that express the noradrenaline transporter

Author(s): A. G. McCluskey, R. J. Mairs, M. Tesson, S. L. Pimlott, J. W. Babich, M. N. Gaze, S. Champion, M. Boyd

Targeted radiotherapy using (131)I-metaiodobenzylguanidine ((131)I-MIBG) has produced remissions in some neuroblastoma patients. We previously reported that combining (131)I-MIBG with the topoisomerase I inhibitor topotecan induced long-term DNA damage and supraadditive toxicity to noradrenaline transporter (NAT)-expressing cells and xenografts. This combination treatment is undergoing clinical evaluation. This present study investigated the potential of poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP-1) inhibition, in vitro and in vivo, to further enhance (131)I-MIBG/topotecan efficacy. METHODS: Combinations of topotecan and the PARP-1 inhibitor PJ34 were assessed for synergism in vitro by combination-index analysis in SK-N-BE(2c) (neuroblastoma) and UVW/NAT (NAT-transfected glioma) cells. Three treatment schedules were evaluated: topotecan administered 24 h before, 24 h after, or simultaneously with PJ34. Combinations of PJ34 and (131)I-MIBG and of PJ34 and (131)I-MIBG/topotecan were also assessed using similar scheduling. In vivo efficacy was measured by growth delay of tumor xenografts. We also assessed DNA damage by gammaH2A.X assay, cell cycle progression by fluorescence-activated cell sorting analysis, and PARP-1 activity in treated cells. RESULTS: In vitro, only simultaneous administration of topotecan and PJ34 or PJ34 and (131)I-MIBG induced supraadditive toxicity in both cell lines. All scheduled combinations of PJ34 and (131)I-MIBG/topotecan induced supraadditive toxicity and increased DNA damage in SK-N-BE(2c) cells, but only simultaneous administration induced enhanced efficacy in UVW/NAT cells. The PJ34 and (131)I-MIBG/topotecan combination treatment induced G(2) arrest in all cell lines, regardless of the schedule of delivery. In vivo, simultaneous administration of PJ34 and (131)I-MIBG/topotecan significantly delayed the growth of SK-N-BE(2c) and UVW/NAT xenografts, compared with (131)I-MIBG/topotecan therapy. CONCLUSION: The antitumor efficacy of topotecan, (131)I-MIBG, and (131)I-MIBG/topotecan combination treatment was increased by PARP-1 inhibition in vitro and in vivo.

Full version: Available here

Click the link to go to an external website with the full version of the paper

ISBN: 1535-5667 (Electronic) 0161-5505 (Linking)
Publication Year: 2012
Periodical: J Nucl Med
Periodical Number: 7
Volume: 53
Pages: 1146-54
Author Address: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom. anthony.mccluskey@strath.ac.uk