SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists. **Unfortunately these do not currently work in browsers**

Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Pulmonary arterial enlargement and acute exacerbations of COPD

Author(s): J. M. Wells, G. R. Washko, M. K. Han, N. Abbas, H. Nath, A. J. Mamary, E. Regan, W. C. Bailey, F. J. Martinez, E. Westfall, T. H. Beaty, D. Curran-Everett, J. L. Curtis, J. E. Hokanson, D. A. Lynch, B. J. Make, J. D. Crapo, E. K. Silverman, R. P. Bowler, M. T. Dransfield

BACKGROUND: Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with accelerated loss of lung function and death. Identification of patients at risk for these events, particularly those requiring hospitalization, is of major importance. Severe pulmonary hypertension is an important complication of advanced COPD and predicts acute exacerbations, though pulmonary vascular abnormalities also occur early in the course of the disease. We hypothesized that a computed tomographic (CT) metric of pulmonary vascular disease (pulmonary artery enlargement, as determined by a ratio of the diameter of the pulmonary artery to the diameter of the aorta [PA:A ratio] of >1) would be associated with severe COPD exacerbations. METHODS: We conducted a multicenter, observational trial that enrolled current and former smokers with COPD. We determined the association between a PA:A ratio of more than 1 and a history at enrollment of severe exacerbations requiring hospitalization and then examined the usefulness of the ratio as a predictor of these events in a longitudinal follow-up of this cohort, as well as in an external validation cohort. We used logistic-regression and zero-inflated negative binomial regression analyses and adjusted for known risk factors for exacerbation. RESULTS: Multivariate logistic-regression analysis showed a significant association between a PA:A ratio of more than 1 and a history of severe exacerbations at the time of enrollment in the trial (odds ratio, 4.78; 95% confidence interval [CI], 3.43 to 6.65; P<0.001). A PA:A ratio of more than 1 was also independently associated with an increased risk of future severe exacerbations in both the trial cohort (odds ratio, 3.44; 95% CI, 2.78 to 4.25; P<0.001) and the external validation cohort (odds ratio, 2.80; 95% CI, 2.11 to 3.71; P<0.001). In both cohorts, among all the variables analyzed, a PA:A ratio of more than 1 had the strongest association with severe exacerbations. CONCLUSIONS: Pulmonary artery enlargement (a PA:A ratio of >1), as detected by CT, was associated with severe exacerbations of COPD. (Funded by the National Heart, Lung, and Blood Institute; ClinicalTrials.gov numbers, NCT00608764 and NCT00292552.).

Full version: Available here

Click the link to go to an external website with the full version of the paper

ISBN: 1533-4406 (Electronic) 0028-4793 (Linking)
Publication Year: 2012
Periodical: N Engl J Med
Periodical Number: 10
Volume: 367
Pages: 913-21
Author Address: Lung Health Center, Division of Pulmonary Allergy and Critical Care, University of Alabama at Birmingham, 422 THT 1900 University Blvd., Birmingham, AL 35294, USA. jmwells@uab.edu