4th International Conference on Medical Imaging with Deep Learning Jul 07, 2021 - Jul 09, 2021 — Virtual Meeting (online)
Medical Image Understanding and Analysis Conference 2021 Jul 12, 2021 - Jul 14, 2021 — Virtual Meeting (online)
Medical Imaging Convention [rescheduled] Sep 15, 2021 - Sep 16, 2021 — National Exhibition Centre, Birmingham, England
2021 SINAPSE ASM Sep 16, 2021 - Sep 17, 2021 — Technology & Innovation Centre, University of Strathclyde, 99 George Street, Glasgow
Total Body PET 2021 conference [rescheduled] Sep 22, 2021 - Sep 24, 2021 — Virtual Meeting (online)


SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.

Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis

Author(s): Calvin W. L. Chin, Scott Semple, Tamir Malley, Audrey C. White, Saeed Mirsadraee, Peter J. Weale, Sanjay Prasad, David E. Newby, Marc R. Dweck

Aims To determine the optimal T1 mapping approach to assess myocardial fibrosis at 3T. Methods and results T1 mapping was performed at 3T using the modified look-locker-inversion sequence in 20 healthy volunteers and 20 patients with aortic stenosis (AS). Pre- and post-contrast myocardial T1, the partition coefficient (λ; ΔRmyocardium/ΔRblood, where ΔR = 1/post-contrast T1 − 1/pre-contrast T1), and extracellular volume fraction [ECV; λ (1 − haematocrit)] were assessed. After establishing the optimal time point and myocardial region for analysis, we compared the reproducibility of these T1 measures and their ability to differentiate asymptomatic patients with AS from healthy volunteers. There was no segmental variation across the ventricle in any of the T1 measures evaluated. λ and ECV did not vary with time, while post-contrast T1 was relatively constant between 15 and 30 min. Thus, mid-cavity myocardium at 20 min was used for subsequent analyses. ECV displayed excellent intra-, inter-observer, and scan–rescan reproducibility [intra-class correlation coefficients (ICC) 1.00, 0.97, and 0.96, respectively], as did λ (ICC 0.99, 0.94, 0.93, respectively). Moreover, ECV and λ were both higher in patients with AS compared with controls (ECV 28.3 ± 1.7 vs. 26.0 ± 1.6%, P < 0.001; λ 0.46 ± 0.03 vs. 0.44 ± 0.03, P = 0.02), with the former offering improved differentiation. In comparison, scan–rescan reproducibilities for pre- and post-contrast myocardial T1 were only modest (ICC 0.72 and 0.56) with no differences in values observed between cases and controls (both P> 0.05). Conclusions ECV appears to be the most promising measure of diffuse myocardial fibrosis at 3T based upon its superior reproducibility and ability to differentiate disease from health.

Publication Year: 2013
Periodical: European Heart Journal Cardiovascular Imaging
Periodical Number:
Author Address: