NRS Mental Health Network Annual Scientific Meeting 2020 Nov 04, 2020 09:00 AM - 05:30 PM — Virtual Meeting (online)
Scottish Radiological Society Annual General Meeting 2020 Nov 06, 2020 09:30 AM - 03:30 PM — Virtual Meeting (online)
Megastars in Molecular Imaging seminars Nov 09, 2020 - Nov 10, 2020 — Virtual Meeting (online)
IPEM educational meeting: Artificial Intelligence in MRI Nov 18, 2020 12:00 AM — Virtual Meeting (online)
Blood-Brain Barrier Symposium Nov 23, 2020 09:30 AM - 05:00 PM — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Magnetic resonance imaging of mass transport and structure inside a phototrophic biofilm

Author(s): B. Ramanan, W. M. Holmes, W. T. Sloan, V. R. Phoenix

Abstract:
The aim of this study was to utilize magnetic resonance imaging (MRI) to image structural heterogeneity and mass transport inside a biofilm which was too thick for photon based imaging. MRI was used to map water diffusion and image the transport of the paramagnetically tagged macromolecule, Gd-DTPA, inside a 2.5 mm thick cyanobacterial biofilm. The structural heterogeneity of the biofilm was imaged at resolutions down to 22 x 22 mum, enabling the impact of biofilm architecture on the mass transport of both water and Gd-DTPA to be investigated. Higher density areas of the biofilm correlated with areas exhibiting lower relative water diffusion coefficients and slower transport of Gd-DTPA, highlighting the impact of biofilm structure on mass transport phenomena. This approach has potential for shedding light on heterogeneous mass transport of a range of molecular mass molecules in biofilms.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 1432-0991 (Electronic)0343-8651 (Linking)
Publication Year: 2013
Periodical: Curr Microbiol
Periodical Number: 5
Volume: 66
Pages: 456-61
Author Address: Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom.