PET is Wonderful Annual Meeting 2020 Oct 27, 2020 02:00 PM - 05:40 PM — Virtual Meeting (online)
Through the Looking Glass: Breaking Barriers in STEM Oct 28, 2020 12:00 PM - 03:30 PM — Virtual Meeting (online)
NRS Mental Health Network Annual Scientific Meeting 2020 Nov 04, 2020 09:00 AM - 05:30 PM — Virtual Meeting (online)
Scottish Radiological Society Annual General Meeting 2020 Nov 06, 2020 09:30 AM - 03:30 PM — Virtual Meeting (online)
IPEM educational meeting: Artificial Intelligence in MRI Nov 18, 2020 12:00 AM — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

White matter correlates of cognitive dysfunction after mild traumatic brain injury

Author(s): I. D. Croall, C. J. Cowie, J. He, A. Peel, J. Wood, B. S. Aribisala, P. Mitchell, A. D. Mendelow, F. E. Smith, D. Millar, T. Kelly, A. M. Blamire

Abstract:
OBJECTIVE: To relate neurophysiologic changes after mild/moderate traumatic brain injury to cognitive deficit in a longitudinal diffusion tensor imaging investigation. METHODS: Fifty-three patients were scanned an average of 6 days postinjury (range = 1-14 days). Twenty-three patients were rescanned 1 year later. Thirty-three matched control subjects were recruited. At the time of scanning, participants completed cognitive testing. Tract-Based Spatial Statistics was used to conduct voxel-wise analysis on diffusion changes and to explore regressions between diffusion metrics and cognitive performance. RESULTS: Acutely, increased axial diffusivity drove a fractional anisotropy (FA) increase, while decreased radial diffusivity drove a negative regression between FA and Verbal Letter Fluency across widespread white matter regions, but particularly in the ascending fibers of the corpus callosum. Raised FA is hypothesized to be caused by astrogliosis and compaction of axonal neurofilament, which would also affect cognitive functioning. Chronically, FA was decreased, suggesting myelin sheath disintegration, but still regressed negatively with Verbal Letter Fluency in the anterior forceps. CONCLUSIONS: Acute mild/moderate traumatic brain injury is characterized by increased tissue FA, which represents a clear neurobiological link between cognitive dysfunction and white matter injury after mild/moderate injury.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 1526-632X (Electronic) 0028-3878 (Linking)
Publication Year: 2014
Periodical: Neurology
Periodical Number: 6
Volume: 83
Pages: 494-501
Author Address: From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK. i.d.croall@newcastle.ac.uk. From the Institute of Cellular Medicine & Newcastle MR Centre (I.D.C., C.J.A.C., J.W., F.E.S., A.M.B.), Newcastle University; Departments of Neurosurgery (C.J.A.C., P.M., A.D.M.) and Neuropsychology (T.K.), Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne; Aberdeen Biomedical Imaging Centre (J.H.), School of Medicine and Dentistry, University of Aberdeen; Department of Psychology (A.P.), Durham University; Brain Research Imaging Centre (B.S.A.), Neuroimaging Sciences, University of Edinburgh; and NeuroCog (D.M.), John Buddle Village, Newcastle upon Tyne, UK.