Data Sciences and Brain Health across the Life Course session in 2020 SICSA Conference Oct 01, 2020 01:15 PM - 03:15 PM — Virtual Meeting (online)
Ophthalmic Medical Image Analysis MICCAI 2020 Workshop Oct 08, 2020 12:00 AM — Virtual Meeting (online)
Predictive Intelligence in Medicine MICCAI 2020 Workshop Oct 08, 2020 12:00 AM — Virtual Meeting (online)
PET is Wonderful Annual Meeting 2020 Oct 27, 2020 02:00 PM - 05:40 PM — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Functional nasal morphology of chimaerid fishes

Author(s): L. E. Howard, W. M. Holmes, S. Ferrando, J. S. Maclaine, R. N. Kelsh, A. Ramsey, R. L. Abel, J. P. Cox

Abstract:
Holocephalans (chimaeras) are a group of marine fishes comprising three families: the Callorhinchidae (callorhinchid fishes), the Rhinochimaeridae (rhinochimaerid fishes) and the Chimaeridae (chimaerid fishes). We have used X-ray microcomputed tomography and magnetic resonance imaging to characterise in detail the nasal anatomy of three species of chimaerid fishes: Chimaera monstrosa, C. phantasma and Hydrolagus colliei. We have shown that the nasal chamber of these three species is linked to the external environment by an incurrent channel and to the oral cavity by an excurrent channel via an oral groove. A protrusion of variable morphology is present on the medial wall of the incurrent channel in all three species, but is absent in members of the two other holocephalan families that we inspected. A third nasal channel, the lateral channel, functionally connects the incurrent nostril to the oral cavity, by-passing the nasal chamber. From anatomical reconstructions, we have proposed a model for the circulation of water, and therefore the transport of odorant, in the chimaerid nasal region. In this model, water could flow through the nasal region via the nasal chamber or the lateral channel. In either case, the direction of flow could be reversed. Circulation through the entire nasal region is likely to be driven primarily by the respiratory pump. We have identified several anatomical features that may segregate, distribute, facilitate and regulate flow in the nasal region and have considered the consequences of flow reversal. The non-sensory cilia lining the olfactory sensory channels appear to be mucus-propelling, suggesting that these cilia have a common protective role in cartilaginous fishes (sharks, rays and chimaeras). The nasal region of chimaerid fishes shows at least two adaptations to a benthic lifestyle, and suggests good olfactory sensitivity, with secondary folding enhancing the hypothetical flat sensory surface area by up to 70%.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 1097-4687 (Electronic) 0022-2887 (Linking)
Publication Year: 2013
Periodical: J Morphol
Periodical Number: 9
Volume: 274
Pages: 987-1009
Author Address: Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.