Scottish Clinical Imaging Network (SCIN) Annual Event 2020 [postponed] Apr 30, 2020 09:00 AM - 04:00 PM — Glasgow Caledonian University
NCITA National Conference: Translating Imaging Biomarkers for Improved Patient Outcomes [postponed] May 05, 2020 10:00 AM - 05:00 PM — New Hunt's House, Guy's Campus, King's College London
Scottish Radiological Society Spring Meeting 2020 [postponed] May 15, 2020 09:00 AM - 04:10 PM — Centre for Health Science, Inverness
2020 SINAPSE ASM Jun 19, 2020 09:00 AM - 05:00 PM — Virtual Meeting (online)
3rd International Conference on Medical Imaging with Deep Learning Jul 06, 2020 - Jul 08, 2020 — Palais des congrès, Montréal, Canada

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Systemic inflammation impairs tissue reperfusion through endothelin-dependent mechanisms in cerebral ischemia

Author(s): K. N. Murray, S. Girard, W. M. Holmes, L. M. Parkes, S. R. Williams, A. R. Parry-Jones, S. M. Allan

Abstract:
BACKGROUND AND PURPOSE: Systemic inflammation contributes to diverse acute and chronic brain pathologies, and extensive evidence implicates inflammation in stroke susceptibility and poor outcome. Here we investigate whether systemic inflammation alters cerebral blood flow during reperfusion after experimental cerebral ischemia. METHODS: Serial diffusion and perfusion-weighted MRI was performed after reperfusion in Wistar rats given systemic (intraperitoneal) interleukin-1beta or vehicle before 60-minute transient middle cerebral artery occlusion. The expression and location of endothelin-1 was assessed by polymerase chain reaction, ELISA, and immunofluorescence. RESULTS: Systemic interleukin-1 caused a severe reduction in cerebral blood flow and increase in infarct volume compared with vehicle. Restriction in cerebral blood flow was observed alongside activation of the cerebral vasculature and upregulation of the vasoconstricting peptide endothelin-1 in the ischemic penumbra. A microthrombotic profile was also observed in the vasculature of rats receiving interleukin-1. Blockade of endothelin-1 receptors reversed this hypoperfusion, reduced tissue damage, and improved functional outcome. CONCLUSIONS: These data suggest patients with a raised inflammatory profile may have persistent deficits in perfusion after reopening of an occluded vessel. Future therapeutic strategies to interrupt the mechanism identified could lead to enhanced recovery of penumbra in patients with a heightened inflammatory burden and a better outcome after stroke.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 1524-4628 (Electronic) 0039-2499 (Linking)
Publication Year: 2014
Periodical: Stroke
Periodical Number: 11
Volume: 45
Pages: 3412-9
Author Address: From the Faculty of Life Sciences (K.N.M., S.M.A.) and Centre for Imaging Science (L.M.P., S.R.W.), University of Manchester, Manchester, United Kingdom; Sainte-Justine Hospital Research Centre, University of Montreal, Canada (S.G.); Glasgow Experimental MRI Centre, The University of Glasgow, Glasgow, United Kingdom (W.M.H.); and University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom (A.R.P.-J.). From the Faculty of Life Sciences (K.N.M., S.M.A.) and Centre for Imaging Science (L.M.P., S.R.W.), University of Manchester, Manchester, United Kingdom; Sainte-Justine Hospital Research Centre, University of Montreal, Canada (S.G.); Glasgow Experimental MRI Centre, The University of Glasgow, Glasgow, United Kingdom (W.M.H.); and University of Manchester, Manchester Academic Health Sciences Centre, United Kingdom (A.R.P.-J.). adrian.parry-jones@manchester.ac.uk.