Medical Imaging Convention [rescheduled] Sep 15, 2021 - Sep 16, 2021 — National Exhibition Centre, Birmingham, England
2021 SINAPSE ASM Sep 16, 2021 - Sep 17, 2021 — Technology & Innovation Centre, University of Strathclyde, 99 George Street, Glasgow
Total Body PET 2021 conference [rescheduled] Sep 22, 2021 - Sep 24, 2021 — Virtual Meeting (online)
PET is Wonderful Annual Meeting 2021 Oct 26, 2021 12:00 AM — Virtual Meeting (online)

eLearning

SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.


Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Detection of ischemic penumbra using combined perfusion and T2* oxygen challenge imaging

Author(s): Craig A. Robertson, Christopher McCabe, M. Rosario Lopez-Gonzalez, Graeme A. Deuchar, Krishna Dani, William M. Holmes, Keith W. Muir, Celestine Santosh, I. Mhairi Macrae

Abstract:
BACKGROUND: Acute ischemic stroke is common and disabling, but there remains a paucity of acute treatment options and available treatment (thrombolysis) is underutilized. Advanced brain imaging, designed to identify viable hypoperfused tissue (penumbra), could target treatment to a wider population. Existing magnetic resonance imaging and computed tomography-based technologies are not widely used pending validation in ongoing clinical trials. T2* oxygen challenge magnetic resonance imaging, by providing a more direct readout of tissue viability, has the potential to identify more patients likely to benefit from thrombolysis - irrespective of time from stroke onset - and patients within and beyond the 4·5 h thrombolysis treatment window who are unlikely to benefit and are at an increased risk of hemorrhage. AIMS: This study employs serial multimodal imaging and voxel-based analysis to develop optimal data processing for T2* oxygen challenge penumbra assessment. Tissue in the ischemic hemisphere is compartmentalized into penumbra, ischemic core, or normal using T2* oxygen challenge (single threshold) or T2* oxygen challenge plus cerebral blood flow (dual threshold) data. Penumbra defined by perfusion imaging/apparent diffusion coefficient mismatch (dual threshold) is included for comparison. METHODS: Permanent middle cerebral artery occlusion was induced in male Sprague-Dawley rats (n = 6) prior to serial multimodal imaging: T2* oxygen challenge, diffusion-weighted and perfusion imaging (cerebral blood flow using arterial spin labeling). RESULTS: Across the different methods evaluated, T2* oxygen challenge combined with perfusion imaging most closely predicted 24 h infarct volume. Penumbra volume declined from one to four-hours post-stroke: mean ± SD, 77 ± 44 to 49 ± 37 mm3 (single T2* oxygen challenge-based threshold); 55 ± 41 to 37 ± 12 mm3 (dual T2* oxygen challenge/cerebral blood flow); 84 ± 64 to 42 ± 18 mm3 (dual cerebral blood flow/apparent diffusion coefficient), as ischemic core grew: 155 ± 37 to 211 ± 36 mm3 (single apparent diffusion coefficient threshold); 178 ± 56 to 205 ± 33 mm3 (dual T2* oxygen challenge/cerebral blood flow); 139 ± 30 to 168 ± 38 mm3 (dual cerebral blood flow/apparent diffusion coefficient). There was evidence of further lesion growth beyond four-hours (T2-defined edema-corrected infarct, 231 ± 19 mm3 ). CONCLUSIONS: In conclusion, T2* oxygen challenge combined with perfusion imaging has advantages over alternative magnetic resonance imaging techniques for penumbra detection by providing serial assessment of available penumbra based on tissue viability.

Full version: Available here

Click the link to go to an external website with the full version of the paper


ISBN: 1747-4949
Publication Year: 2014
Periodical: International Journal of Stroke
Periodical Number:
Volume:
Pages: n/a-n/a
Author Address: