PET/MR User's Meeting: Technical challenges Feb 05, 2020 10:30 AM - 03:00 PM — Henry Wellcome Auditorium, 183 Euston Road, London
Launch event for Aberdeen Hub of One HealthTech Feb 13, 2020 06:00 PM - 09:00 PM — ONE Tech Hub, Schoolhill, Aberdeen
Scottish Ophthalmic Imaging Society meeting Feb 14, 2020 09:30 AM - 05:00 PM — Royal Society of Edinburgh, 22-26 George Street, Edinburgh
Scottish+ Radiotherapy Physics Meeting 2020 Feb 21, 2020 09:30 AM - 05:00 PM — Scottish Health Service Centre , Western General Hospital, Edinburgh
2nd Scottish Ultrasound Annual Scientific Meeting Feb 28, 2020 10:00 AM - 05:00 PM — Collins Building, University of Strathclyde


SINAPSE experts from around Scotland have developed ten online modules designed to explain medical imaging. They are freely available and are intended for non-specialists.

Edinburgh Imaging Academy at the University of Edinburgh offers the following online programmes through a virtual learning environment:

Neuroimaging for Research MSc/Dip/Cert

Imaging MSc/Dip/Cert

PET-MR Principles & Applications Cert

Applied Medical Image Analysis Cert

Online Short Courses

Panos Lepipas

Position: SINAPSE PhD Student

Description of Phd:

Cyclotrons producing PET isotopes run in batch mode producing 10s of curries per run. Patient doses on the other hand tend to be a factor of 1000 smaller; i.e.; 10s of millicurries. The development of smaller isotope production units along with the utility of microfluidic technology for the radiolabelling of tracers has the potential to provide single patients doses at the push of a button. In addition cyclotrons are large and require shielding and a specialised facility for housing. A smaller isotope production unit would have the potential to be installed in any hospital site increasing the availability of PET radiotracers for imaging of patients.

Recently a small, low power table-top accelerator has been developed (Biomarker Generator, Advanced Biomarker Technologies). This ‘table top’ cyclotron is composed of an electro-magnet, a vacuum system, a radio-frequency acceleration system, a source of positive ions, a set of targets for C-11 and F-18 and a radiation shield. With shielding the total weight of the accelerator is 10.8 ton and only occupies about 2 square metres. Laser production has the potential to improve on these recent developments, requiring even less shielding. This has the potential to allow the availability of PET radiopharmaceuticals at the push of a button in any hospital site that has a PET camera. In addition the potential application of laser technology in radiotherapy may result in laser technology being marketed for dual purposes in a single system.