Author(s)

Maria Valdes Hernandez, J. Allan, Andreas Glatz, J. Kyle, Janie Corley, Caroline Brett, Susana Munoz-Maniega, Natalie Royle, Mark Bastin, John Starr, Ian Deary, Joanna Wardlaw

ISBN

1279-7707

Publication year

2014

Periodical

The Journal of Nutrition, Health & Aging

Periodical Number

Volume

Pages

Author Address

Full version

Context
Brain Iron Deposits (IDs) are associated with neurodegenerative diseases and impaired cognitive function in later life, but their cause is unknown. Animal studies have found evidence of relationships between dietary iron, calorie and cholesterol intake and brain iron accumulation.
Objectives
To investigate the relationship between iron, calorie, and cholesterol intake, blood indicators of iron status, and brain IDs in humans.
Design, Setting and Participants
Cohort of 1063 community-dwelling older individuals born in 1936 (mean age 72.7years, SD=0.7) with dietary information, results from blood sample analyses and brain imaging data contemporaneously in old age.
Measurements
Magnetic Resonance Imaging was used to assess regional volumes of brain IDs in basal ganglia, brainstem, white matter, thalamus, and cortex/border with the corticomedullary junction, using a fully automatic assessment procedure followed by individual checking/correction where necessary. Haemoglobin, red cell count, haematocrit, mean cell volume, ferritin and transferrin were obtained from blood samples and typical daily intake of iron, calories, and cholesterol were calculated from a validated food-frequency questionnaire.
Results
Overall, 72.8% of the sample that had valid MRI (n=676) had brain IDs. The median total volume of IDs was 40mm3, inter-quartile range (IQR)=196. Basal ganglia IDs (median=35, IQR=159.5 mm3), were found in 70.6% of the sample. IDs in the brainstem were found in 12.9% of the sample, in the cortex in 1.9%, in the white matter in 6.1% and in the thalamus in 1.0%. The median daily intake of calories was 1808.5kcal (IQR=738.5), of cholesterol was 258.5mg (IQR=126.2) and of total iron was 11.7mg (IQR=5). Iron, calorie or cholesterol intake were not directly associated with brain IDs. However, caloric intake was associated with ferritin, an iron storage protein (p=0.01).
Conclusion
Our results suggest that overall caloric, iron and cholesterol intake are not associated with IDs in brains of healthy older individuals but caloric intake could be associated with iron storage. Further work is required to corroborate our findings on other samples and investigate the underlying mechanisms of brain iron accumulation.