Author(s)
ISBN
Publication year
Periodical
Periodical Number
Volume
Pages
Author Address
Previous research has shown that encoding information in the context of self-evaluation leads to memory enhancement, supported by activation in ventromedial pFC. Recent evidence suggests that similar self-memory advantages can be obtained under nonevaluative encoding conditions, such as when object ownership is used to evoke self-reference. Using fMRI, the current study explored the neural correlates of object ownership. During scanning, participants sorted everyday objects into self-owned or other-owned categories. Replicating previous research, a significant self-memory advantage for the objects was observed (i.e., self-owned > other-owned). In addition, encoding self-owned items was associated with unique activation in posterior dorsomedial pFC (dMPFC), left insula, and bilateral supramarginal gyri (SMG). Subsequent analysis showed that activation in a subset of these regions (dMPFC and left SMG) correlated with the magnitude of the self-memory advantage. Analysis of the time-to-peak data suggested a temporal model for processing ownership in which initial activation of dMPFC spreads to SMG and insula. These results indicate that a self-memory advantage can be elicited by object ownership and that this effect is underpinned by activity in a neural network that supports attentional, reward, and motor processing.